Performance comparison of designated preprocessing white light interferometry algorithms on emerging multi- and many-core architectures
نویسندگان
چکیده
Parallel computing has been a niche for scientific research in academia for decades. However, as common industrial applications become more and more performance demanding and raising the clock frequency of conventional single-core systems is hardly an option due to reaching technological limitations, efficient use of multi-core CPUs has become imperative. 3D surface analysis of objects using the white light interferometry presents one of such computationally challenging applications. In this article three established preprocessing methods of white light interferometry data analysis are used to evaluate the suitability of three modern multi-core architectures generic multi-core CPUs, GPGPUs and IBM’s Cell BE. The results show that function offloading to GPGPUs, which offer independent memory and many hundreds of threads running in parallel, yields the highest performance compared to other systems. Furthermore, by outsourcing computational tasks to GPUs, the workload of other system resources, such as CPU or system memory, is reduced. This allows accelerated execution of other tasks, e.g. acquisition of images with higher frame rates.
منابع مشابه
Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملImproving Main Memory Hash Joins on Intel Xeon Phi Processors: An Experimental Approach
Modern processor technologies have driven new designs and implementations in main-memory hash joins. Recently, Intel Many Integrated Core (MIC) co-processors (commonly known as Xeon Phi) embrace emerging x86 single-chip many-core techniques. Compared with contemporary multi-core CPUs, Xeon Phi has quite di↵erent architectural features: wider SIMD instructions, many cores and hardware contexts, ...
متن کاملA Preprocessing Technique to Investigate the Stability of Multi-Objective Heuristic Ensemble Classifiers
Background and Objectives: According to the random nature of heuristic algorithms, stability analysis of heuristic ensemble classifiers has particular importance. Methods: The novelty of this paper is using a statistical method consists of Plackett-Burman design, and Taguchi for the first time to specify not only important parameters, but also optimal levels for them. Minitab and Design Expert ...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملCondensed forms for the symmetric eigenvalue problem on multi-threaded architectures
We investigate the performance of the routines in LAPACK and the Successive Band Reduction (SBR) toolbox for the reduction of a dense matrix to tridiagonal form, a crucial preprocessing stage in the solution of the symmetric eigenvalue problem, on generalpurpose multi-core processors. In response to the advances of hardware accelerators, we also modify the code in the SBR toolbox to accelerate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011